Mitigating damage from natural disasters and bad weather
Deeper understanding of ocean behaviour will help society better forecast and protect itself from catastrophic storms such as hurricanes, typhoons and tsunamis.Better ocean information will improve short- and long-range weather and climate prediction, thereby strengthening disaster preparedness and damage mitigation and strategies for agricultural and seafood harvests. As well, better ocean observing will improve safety of the marine transportation network -- which conveys 90% of goods traded internationally -- with accurate, timely information about ocean conditions.Among the benefits offered by better ocean observing: measurement of sea surface temperatures could predict movement of fish from traditional waters, and even outbreaks of disease, which have been associated with warmer water, while monitoring pollution-induced eutrophication will help predict toxic algal blooms.Energy Oceans are a growing source of energy -- oil and especially natural gas -- as operators reach into the seafloor in deeper and deeper parts of the ocean with multi-billion dollar facilities. Offshore wind farms would also depend on timely, reliable information on ocean conditions. Better ocean observation will help harness various energy sources safely and efficiently with minimal environmental impact.A more fully developed ocean observing system will foster important new insights into how altered ocean conditions, including warmer water and increasing acidity, affect weather, climate and the role of the oceans as a carbon sink. Scientists want to know how warmer water, for example, impacts microscopic life forms that consume some 50 giga-tonnes of carbon per year, about the same as all plants and trees on land.As the planet's primary reservoir, oceans govern the global water cycle. Improved ocean observations will help scientists better understand precipitation patterns.A majority of life on Earth eats, swims, crawls, fights and lives in oceans. Water temperatures affect where species live and travel, as well as the distribution of nutrients, plankton and on up the food web. An integrated ocean observing system will illuminate the impact of shifting ocean conditions and pollution on marine and coastal ecosystems and the distribution, abundance and biodiversity of organisms. D. James Baker, former Administrator of the U.S. National Oceanic and Atmospheric Administration, says: "The exciting progress to date also shows the size of the remaining opportunity. We have pathetically few measurements of the oceans relative to their importance to life on Earth and the extent to which we rely on them for energy, weather, food and recreation." According to South African oceanographer John Field, chair of the Scientific Committee of the Global Ocean Observing System: "In the first few decades of this century we can develop an ocean observing system comparable in value to the system we so appreciate for our weather forecasts. If in the year 2020 ocean monitoring and prediction are much improved, we may recall the 2007 Cape Town Summit as when governments intensified the key commitments.""People who watch and worry about each sea unite in support of a much improved, integrated global ocean observing system," says Prof. Howard Roe, Director Emeritus, National Oceanography Centre, Southampton, U.K. and past POGO Chair, who will lead the POGO delegation in Cape Town.Finally, notes Jesse Ausubel, CoML program director for the Alfred P. Sloan Foundation: "2012 will be the centenary of the sinking of the Titanic. I think Captain Smith would be disappointed by the continuing hesitation to firm up our ocean observing system." The Partnership for Observation of the Global Ocean (POGO) links much of the ocean research community. POGO was created by directors and leaders of major oceanographic institutions to focus attention on technical compatibility among observing networks; shared use of infrastructure; and on public outreach and capacity building.
Your Comment :