Greenland Ice Sheet Losing Mass on its Northwest Coast

17 April 2010 | 03:55 Code : 19914 Geoscience events
visits:159
Ice loss from the Greenland ice sheet, which has been increasing during the past...

Ice loss from the Greenland ice sheet, which has been increasing during the past decade over its southern region, is now moving up its northwest coast, according to a new international study. Led by the Denmark Technical Institute’s National Space Institute in Copenhagen and involving the University of Colorado at Boulder, the study indicated the ice-loss acceleration began moving up the northwest coast of Greenland starting in late 2005. The team drew their conclusions by comparing data from NASA’s Gravity and Recovery Climate Experiment satellite system, or GRACE, with continuous GPS measurements made from long-term sites on bedrock on the edges of the ice sheet.The data from the GPS and GRACE provided the researchers with monthly averages of crustal uplift caused by ice-mass loss. The team combined the uplift measured by GRACE over United Kingdom-sized chunks of Greenland while the GPS receivers monitor crustal uplift on scales of just tens of miles. "Our results show that the ice loss, which has been well documented over southern portions of Greenland, is now spreading up along the northwest coast," said Shfaqat Abbas Khan, lead author on a paper that will appear in Geophysical Research Letters. The team found that uplift rates near the Thule Air Base on Greenland’s northwest coast rose by roughly 1.5 inches, or about 4 centimeters, from October 2005 to August 2009. Although the low resolution of GRACE -- a swath of about 155 miles, or 250 kilometers across -- is not precise enough to pinpoint the source of the ice loss, the fact that the ice sheet is losing mass nearer to the ice sheet margins suggests the flows of Greenland outlet glaciers there are increasing in velocity, said the study authors. "When we look at the monthly values from GRACE, the ice mass loss has been very dramatic along the northwest coast of Greenland," said CU-Boulder physics Professor and study co-author John Wahr, also a fellow at CU-Boulder’s Cooperative Institute for Research in Environmental Sciences.


Your Comment :