استفاده از مدل هوش مصنوعی مرکب نظارت شده برای بهبود مدل دراستیک (مطالعه موردی: آبخوان دشت اردبیل)
استفاده از مدل هوش مصنوعی مرکب نظارت شده برای بهبود مدل دراستیک (مطالعه موردی: آبخوان دشت اردبیل)
مریم قرهخانی1، عطاالله ندیری2 و اصغر اصغریمقدم3
تاریخ دریافت: 11/ 02/ 1395 تاریخ پذیرش: 25/ 05/ 1395
چکیده
آلودگی منابع آب زیرزمینی به علت نفوذ آلاینده ها از سطح زمین به سامانه آب زیرزمینی بهویژه در مناطق خشک و نیمهخشک که با کمبود کمی و کیفی منابع آب روبهرو هستند؛ یکی از معضلات جدی به شمار می آید. بنابراین ارزیابی آسیب پذیری آب زیرزمینی به منظور شناسایی مناطق دارای پتانسیل بالای آلودگی برای مدیریت منابع آب زیرزمینی ضروری است. در این پژوهش آسیب پذیری آبخوان دشت اردبیل در برابر آلودگی با استفاده از روش دراستیک مورد بررسی قرار گرفت. در مدل دراستیک هفت متغیر مؤثر در آسیب پذیری که شامل ژرفای آب زیرزمینی، تغذیه خالص، محیط آبخوان، محیط خاک، توپوگرافی، محیط غیر اشباع و هدایت هیدرولیکی است؛ بهصورت هفت لایه رستری تهیه شد و پس از رتبه دهی و وزندهی شاخص دراستیک به دست آمد که برای دشت اردبیل شاخص دراستیک میان 82 تا 151 به دست آمد. اما از آنجایی که مشکل اصلی این مدل اعمالنظرهای کارشناسی برای رتبه دهی و وزن دهی متغیرهای به کار رفته در آن است؛ بنابراین هدف اصلی این پژوهش بهبود مدل دراستیک با استفاده از 5 روش هوش مصنوعی از جمله شبکه عصبی پیشرو، شبکه عصبی برگشتی، فازی ساجنو، فازی ممدانی و مدل مرکب است. تا بدین روش بتوان به نتایج دقیق تری از ارزیابی آسیب پذیری دست یافت. با توجه به ناهمگنی موجود در دشت اردبیل این دشت به سه بخش خاوری، باختری و جنوبی تقسیم و مدل های هوش مصنوعی بهطور جداگانه برای هر بخش اجرا شد. به این منظور متغیرهای دراستیک به عنوان ورودی مدل و شاخص دراستیک به عنوان خروجی مدل تعریف شدند و مقادیر نیترات مربوطه به 2 دسته آموزش و آزمایش تقسیم شد. شاخص دراستیک مربوط به مرحله آموزش با مقادیر نیترات مربوطه تصحیح و پس از آموزش مدل، در مرحله آزمایش نتایج مدل ها با استفاده از مقادیر نیترات ارزیابی شد. نتایج نشان داد که همه روش های هوش مصنوعی توانایی بالایی در بهبود مدل دراستیک دارند؛ اما در این میان، مدل هوش مصنوعی مرکب (SCMAI) نتایج بهتری را دربر داشت. بر پایه این مدل، بخش های باختری و شمالی دشت پتانسیل آلودگی بالایی دارد و باید محافظت بیشتری از این مناطق صورت گیرد.
کلیدواژه ها:آسیب پذیری آب زیرزمینی، دشت اردبیل، دراستیک، هوش مصنوعی، مدل SCMAI.
1دانشجوی دکترا، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران
2استادیار، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران
3استاد، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران
نویسنده مسئول: عطاالله ندیری؛ nadiri@tabrizu.ac.irE-mail: